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The laminar flow of a viscous liquid in a vertical rotating cylinder is 
studied. 

We consider the axisymmetric flow of a viscous incompressible liquid in a semiinfinite 
rotating circular cylinder, where the axis of the cylinder is in the vertical direction 
(Fig. i). The approximate dimensionless system of equations describing the flow of the 
liquid in cylindrical coordinates, together with the initial and boundary conditions, has 
the form [i]: 
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The s y s t e m  o f  e q u a t i o n s  (1) t h r o u g h  (4) i s  o b t a i n e d  by r e p l a c i n g  t h e  d e r i v a t i v e s  

W O- by --:a with the assumption that the radial component V of the velocity is small in 
Oz Oz 

compar i son  w i t h  t h e  a x i a l  W and r o t a t i o n a l  r  componen t s ,  and t h e  d e r i v a t i v e  o f  t h e  f low 
i n  t h e  d i r e c t i o n  o f  t h e  a x i s  i s  much s m a l l e r  t h a n  t h e  d e r i v a t i v e s  w i t h  r e s p e c t  to  t h e  r a d i a l  
coordinate [2]. 

According to the method given in [i] for solving the system (i) through (6), we look 
for the function ~ in the form: 
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Fig. i. Coordinate system and directions of the velocity 
components vr, v~,v: . 

Fig. 2. Dependence of the function y(zo/Re) on zo/Re. 

We find from the condition (5) 

F 2 
17 = q(z) --7- q- Q(z) q- z/Fp. 

2 
(7) 

q(o) = o, Q(o) = &/PV~. (8) 

With no loss in generality we put Po = 0. 

With the help of the representation of the function ~ in the form of (7), Eq. (3) takes 
the ' form 

OW t 0 OW r ~ 
r -- q ' - -  Q'. (9) 

Oz Re r Or Or 2 

Multiplying (9) by r and integrating the result with respect to r on [0~ i] with the 
i 

help of the relation [ rWdr = const , we obtain 
5 

v Q (av i 
8 -} 2 = R--J ~, or  ;It=l" (lo) 

Using the representation (7) and Eq. (4), we can write (i) as 

1 02W u = q +  
Re r OrOz" 

Multiplying this expression by r and integrating the result with respect to r on 
[0, i], we obtain 

= J - +  
q ( l l )  

We linearize (2) by estimating the difference 

O~U I { OU ~ 
E ~  

Or ~ 2U \ O r /  

and comparing it with the derivative 3U/3r. 

Let the distance from the wall of the pipe be y = 1 -- r, then 

8 
OzU 1 ( OU ) z 

ov 2u   -jy / " 
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Fig. 3. Velocity profile W: i) ~2 = 0; 2) 25; 3) i00. 

Using the representation of the function U and the boundary conditions (6), the expan- 
sion of U in y near the wall of the pipe takes the form 

U = o ~ + 2 a ~ y q - a ~ y B + b y ~ - S c y ~ -  ~ . . .  (12) 

Using (12), the quantity e and the derivative ~g/3y can be written, to order y2: 

e = (6b - -  4a31~) y + (12c - -  2a~/m z - -  6a&~) yZ, 

OU _ 2a~ --}- 2aZy -t- 3bg ~. (13) 
oy. 

Using (13) and the fact that the derivative 3U/3y and e both have maximum values near y = 0, 
we see that the quantity e can be neglected in Eq. (2). 

Integrating (2) with respect to r on [0, i], and using the estimates for the deriva- 

an equation for q(z) 

I 

2 

at large Reynolds numbers given in [i], we obtain 

3 ___ q ' : :  (mZ--q). 
Re (14) 

The solution of (14), subject to the initial conditions (8), can be written as 

q (z) = o 3 [ 1 - -  exp (-- 6z/Re)]. 

We l o o k  f o r  t h e  s o l u t i o n  of  (9) u s i n g  t h e  o p e r a t i o n a l  method.  Le t  

= C W exp (--  pz) dz. 

We have the following equation for the transform 

- -  1 d dW r 2 - -  

- - I + p W =  Rer dr r dr 2 - q ' - - Q "  

- IdWI < + . .  
W (1) = 0, -dT r=o 

Kere q' = 6~z (I/Re) -- , and the transform Q' satisfies the relation 
p + 6 (1/Re) 

q-~ Q--V 1 ( d ~ ) l  
- 2 - + - 8 - - - ~ %  - ~ r=l" 

Solving the system of equations (15) and (16), the final expression for W is 

? = - -  3 ( l l R e ) c o 2 - - 2 p  - -  12(l lRe)  l o ( V ' p R e ' ) - - I o ( r ] / p R e  ) + 3 ( l lRe )o~2 (1 - - r  ~) 

2p [p + 6 (1/Re)] I~ (V P Re ) p [p + 6 (1/Re)] 

(15) 

(16) 

(17) 
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Using the inversion theorem for the transform W, and the residue theorem, we find for 
the velocity 

0)z [Jo(lfl~)__Jo(rV'g- ) ] W(z, r)=2(1--r~)--~- j2(]fl~_ ) - [ -2(1-- r  ~) • 

x exp ~2 (6 --  ~2) 1 J exp (-- ~]z/Re). ,~=~ ,, Jo (F,O (18)  

The twisting of the flow due to the circular cylindrical pipe leads to back flow of 
the liquid near the wall of the pipe. Indeed, a numerical analysis of the expression for 

the derivative /0-Or W~)r=I shows that for sufficiently large values of ~ there exists a 

value of z for which OW)I =.0. The distance zo for which (0~r)I ----0. is found 
(-~r r=1 r=1 

from the  equa t ion  

0)2[( 1 V'6" J1 (V6))4J2 (]/6-) exp (--- 6Zo/Re) --3 2exp(--~zdRe)]--4--2~exp(--~2zo/Re) = 0 " ~ _ 2  _ 6 

n ~ l  rt r t~l  

(19) 

This can be rewritten in the form 

0) 2 

4 + 2 ~ exp ( ~] Zo/Re) 

exp (-- p,2zo/Re ) 
0.28954exp (-- 6Zo/Re) --  3 lx 2 --  6 (20) 

A graph of the function on the right hand side of (20) (denoted as y(zo/Re)) is shown 
in Fig. 2. 

The function y(zo/Re) has a minimum value of 25.91 at Zo/Re = 0.067, and hence back 
flow does not occur for ~ < 25.91. The boundary of the back flow for 2 > 25,91 can be 
determined from Fig. 2. It is sufficient to find the abscissa of the point of intersection 
of the straight line y = 2 with the function y(zo/Re). 

The variation of the velocity profile W(z, r) is shown in Fig. 3. 

We consider the behavior of the sum of the pressure and gravity forces acting on a 
particle of fluid near the wall of the pipe: 

I Oz -}- r= 1 (21) 

Using the representation (7) and the relation (i0), the sum of the forces (21) can be 
written as 

-~el { ~' [ 2 exp(--~2z/Re)e,~--~, 7 ]} F: = 8 + 4 ~ ,  exp (-- ~z/Re) 72 0)z 2.07908 exp (-- 6z/Re) --  6 ,,-5--'~ 
o (22) 

It follows from (22) that when 

4 --}- 2 2 exp (-- ~n z z/Re) 
0)z .< n=i 

1.03854 exp (-- 6z/Re) -- 3 e x p  ( -  z/Re) 
2 6 (23) 
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we have F z > 0 and the particle of fluid accelerates near the wall of the pipe up to the 
complete establishment of the velocity W corresponding to Poiseuille flow. The maximum 
value of ma for which the inequality (23) holds for any value of z, is m2 = 5.77. Ob- 
viously the function on the right hand side of (23) is less than the function y(z/Re) 
shown in Fig. 2 for any value of z. 

Hence we conclude that when ma > 25.91, the force F z changes sign at a certain distance 
z, and in this case a particle of fluid slows down and changes direction at z = Zo. For 
the region of twist parameters 5.77 < mz < 25.91, the distance at which a fluid particle 
braked near the wall of the pipe is not large enough to lead to back flow near the wall. 

The study of the behavior of F z as a function of the distance z can be used in an 
experimental verification of the appearance of back flow near the wall. 

NOTATION 

r, z, coordinates of a point in the cylindrical coordinate system; Vr, v~ , Vz, com- 
ponents of the velocity vector in cylindrical coordinates; P, pressure of the liquid; Vj 
W, U, ~, dimensionless components of the velocity vector and pressure, respectively; 
Po, Vo, pressure and velocity of the liquid entering the pipe; g, acceleration of gravity; 
~, kinematic viscosity; R, radius of the pipe; ~o, angular velocity of rotation of the 
pipe; Re, Fp, ~, Reynolds number, separation factor, and twist parameter, respectively; 
q(z), Q(z), dimensionless functions in the formula for ~; e,_a, ~ expansion parameters 
of the function U; p, parameter in the Laplace transform; W, q , , Laplace transforms of 
the function W and the derivatives q' and Q'; Io, I=, Bessel functions of imaginary argu- 
ment of order zero and two; Jo, J2, Bessel functions of real argument or order zero and 
two; ~n, zeros of the Bessel function J~. 
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DROPLET FORMATION FROM A JET OF ONE LIQUID ENTERING ANOTHER 

V. B. Okhotskii UDC 532.529 

Wave theory has been used to derive expressions for the droplet sizes under 
various flow conditions. 

When a jet of one liquid enters another but does not mix with it, waves are formed at 
the interface, which govern the break-up into droplets. If the jet is vertical, the break- 
up occurs in droplet, jet axisymmetric, jet bending, and spraying modes. 

In droplet mode, the drops form at the end of the nozzle, which may be considered as 
agravitational wave, length % . As a drop forms, a capillary wave %a forms at the surface, 
which moves over it towards t~e nozzle. If we neglect the efflux speed and assume that 
droplet formation ends when the capillary wave has traveled half the perimeter and reaches 
the axis, while the gravitational wave at the same time has traveled the nozzle radius, we 
have, 

~D~2) wg = d/(2) wg. (1) 
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